Software

TeraChem

TeraChem is general purpose quantum chemistry software designed to run on NVIDIA GPU architectures under a 64-bit Linux operating system. My contribution to this software was the development of:

  • GPU-accelerated  implicit solvent model, C-PCM, for ground state calculation (HF/DFT) and the excited state calculations (TDDFT)
  • GPU-accelerated ensemble density functional theory, REKS, for energy, analytical gradient, and non-adiabatic coupling vector evaluations, which enables large scale non-adiabatic dynamics simulation of photochemical processes.
  • GPU-accelerated restrained electrostatic potential fit charge model (RESP)
  • Analytical 3rd derivatives of exchange correlation (XC) functionals in spin-unrestricted Kohn-Sham density functional theory (DFT).
Related Publications

F. Liu, N. Luehr, H. J. Kulik, and T. J. Martínez, Quantum Chemistry for Solvated Molecules on Graphical Processing Units (GPUs) using Polarizable Continuum Models, J. Chem. Theory Comput. 11, 3131 (2015)

F. Liu, D. Sanchez, H. Kulik, and T. J. Martínez, Exploiting Graphical Processing Units to Enable Quantum Chemistry Calculation of Large Molecules in Polarizable Continuum Models, Int. J. Quantum Chem. 119, e25760 (2019) (Cover for special issue “Advances in Simulating Solvation”)

F. Liu, M. Filatov, and T. J. Martínez, Analytical Derivatives of the Individual State Energies in Ensemble Density Functional Theory Method II: Implementation on Graphical Processing Units (GPUs), Preprint chemrxiv. 79856 (2019)

R. M. Parrish, F. Liu, and T. J. Martínez, Communication: A Difference Density Picture for the Self-Consistent Field Ansatz., J. Chem. Phys. 144, 131101 (2016)

M. Filatov, F. Liu, K. S. Kim, and T. J. Martínez, Self-Consistent Implementation of Ensemble Density Functional Theory Method for Multiple Strongly Correlated Electron Pairs, J. Chem. Phys. 145, 244104 (2016)

M. Filatov, F. Liu, K. S. Kim, T. J. Martínez, Analytical Derivatives of the Individual State Energies in Ensemble Density Functional Theory Method. I. General formalism, J. Chem. Phys. 147, 034113 (2017)

X. Li, R. M. Parrish, F. Liu, S. I. L. K. Schumacher, and T. J. Martínez, An ab initio Exciton Model Including Charge-Transfer Excited States, J. Chem. Theory Comput. 13, 3493 (2017)

AutoNEB

AutoNEB is an automated toolkit for the first-principles studies of reaction pathways, especially in complicated reaction networks involving multiple conformers of the reaction species. Challenges remain in the automatic generation of conformers of an arbitrary molecule due to the high variability in bonding and charge state and the limited availability of suitable force field parameters needed in conventional conformer search methods, especially for charged species or radicals. We overcome this through automated enumeration of all possible combination of rotatable dihedrals, followed by automated pruning to generate featured conformers.

The open-source version of this toolkit is coming soon.

Related Publication

S. Banerjee,§F. Liu,§ D.M. Sanchez, T. J. Martínez, and R. N. Zare, Pomeranz-Fritsch Synthesis of Isoquinoline: Gas-Phase Collisional Activation Opens Additional Reaction Pathways, J. Am. Chem. Soc. 139, 14352 (2017) [ §These two authors contribute equally ]

MultirefPredict

MultirefPredict is an automated workflow to predict multireference character of molecules in quantum chemistry calculation

Related Publication

F. Liu, C. Duan, and H. J. Kulik. Rapid Detection of Strong Correlation with Machine Learning for Transition Metal Complex High-Throughput Screening. J. Phys. Chem. Lett. (In Press).